Table of Contents

List of Figures .. 3
List of Tables ... 3
Intended Reader ... 4

1. 3e-636L3 Product Overview .. 4

2. Azure Gateway Specific Settings for 3e-636L3 ... 4
 2.1. Site-to-Site Connection ... 4
 2.1.1. Create Local Network Gateway ... 5
 2.1.2. Create IPsec Policy ... 5
 2.1.3. Create New S2S Connection ... 5

3. Configure 3e-636L3 to Connect to Virtual Network Gateway ... 5
 3.1. Minimum Configuration ... 6
 3.1.1. Black Side Network: Uplink .. 6
 3.2. Site-to-Site VPN Configuration ... 7

4. Test VPN Connection ... 8

Appendix A: 3e-636L3 Supported Crypto Algorithms ... 9
Appendix B: PowerShell Script to Set up Azure VPN Gateway ... 11
Appendix C: Script to Remove & Clean Up Azure VPN Gateway .. 15
List of Figures

Figure 1 3e-636L3 Typical Use Cases ... 4
Figure 2 Accessing UUT ... 6
Figure 3 UUT Uplink IP Setting .. 7
Figure 4 Minimum Network Diagram ... 8

List of Tables

Table 1 Encryption Algorithms Supported by 636L3 9
Table 2 Integrity Algorithms Supported by 636L3 ... 9
Table 3 Diffie Hellman Groups Supported by 636L3 10
Intended Reader

This writeup is intended for Azure lab to test IPsec Site-to-Site interoperability between Azure VPN gateway and Ultra-3eTI 3e-636L3 product.

Attached in the Appendix B is a complete Azure PowerShell script that was used in Ultra-3eTI in-house test. It can be used as a reference.

1. 3e-636L3 Product Site-to-Site VPN Overview

3e-636L3 can be used in small office as on-premise VPN router to create Site-to-Site IPsec tunnel to Azure VPN gateway where major IT infrastructure is. Traffic targeting to vnet on cloud is forwarded in IPsec tunnel. All other traffic to 3rd party websites goes as usual.

Only IKEv2, route-based VPN is supported on 3e-636L3. BGP protocol is not supported.

2. Azure Gateway Specific Settings for 3e-636L3

- Create “virtual network” with one subnet as usual
- Create “virtual machine” in subnet as usual, for access test purpose
- Create “virtual network gateway” as usual

2.1. Site-to-Site Connection

In the following PowerShell script, the specific configuration items 3e-636L3 needs are highlighted in bold comment.

```powershell
$RGn = "VPN-Resource-Group"
$LOCn = "USGov Virginia"
$GWn = "Gov-VPN-GW3"
```
2.1.1. Create Local Network Gateway

$LocalGWn = "On-Premise-VPN1"
#Use your own IP during test
$OnPremisePublicIP = "71.163.239.155"
#3e-636L3 default LAN (red side) network is 192.168.16.0/24
$OnPremiseSubnets = "192.168.16.0/24"

$localgw = New-AzLocalNetworkGateway ' -Name $LocalGWn ' -ResourceGroupName $RGn ' -Location $LOCn ' -GatewayIpAddress $OnPremisePublicIP ' -AddressPrefix $OnPremiseSubnets

2.1.2. Create IPsec Policy

#Refer to Appendix A for 3e-636L3 supported crypto policy.
$ipsecPolicy = New-AzIpsecPolicy ' -IpsecEncryption "GCMAES256" ' -IpsecIntegrity "GCMAES256" ' -IkeEncryption "AES256" ' -IkeIntegrity "SHA256" ' -DhGroup "ECP384" ' -PfsGroup "None"
Note: PFSgroup must be "None". Otherwise, rekey would always fail.

2.1.3. Create New S2S Connection

$S2SCONn = "On-Premise-VPN1-connection"
#3e-636L3 requires minimum 16 characters in PSK
$PSK = "12345678901234567890"

$vnetgw = Get-AzVirtualNetworkGateway ' -Name $GWn ' -ResourceGroupName $RGn

$S2SCONn = New-AzVirtualNetworkGatewayConnection ' -Name $LocalGWn ' -ResourceGroupName $RGn ' -Location $LOCn ' -VirtualNetworkGateway1 $vnetgw ' -LocalNetworkGateway2 $localgw ' -ConnectionType "IPsec" ' -SharedKey $PSK ' -IpsecPolicies $ipsecPolicy

3. Configure 3e-636L3 to Connect to Virtual Network Gateway
Plug in management PC on 3e-636L3 ethernet port labeled “Local MGMT”. Configure PC network adapter to have IP address 192.168.15.2

Access 3e-636-L3 by URL https://192.168.15.1

![Figure 2 Accessing UUT](image)

Device shipped for test is pre-configured with username “CryptoOfficer” and password “CryptoFIPS1” without quote sign.

Login to the device and click “Continue” button.

3.1. Minimum Configuration

3.1.1. Black Side Network: Uplink
The uplink port labeled “ENCRYT/POE” is pre-configured in DHCP mode. Click “Black Port” link on left menu to verify it gets IP address successfully or you may set static IP as needed.

The downlink port labeled “UNENCRYPT/POE” is pre-configured with IP 192.168.16.1 and DHCP server to allocate IP (192.168.16.0/24) for LAN attached on this port.

3.2. Site-to-Site VPN Configuration

Click “Azure VPN Settings” link on left menu.

Click “Site-to-Site” radio option.

VNet Gateway IP: Find “virtual network gateway” IP from Azure portal or PowerShell

Remote Subnets: Fill in all subnets reachable (and want to reach) through this connection to cloud. Multiple subnets are delimited by “,”. No white space is allowed. The example only shows the VNet on Azure VPN Gateway.

Local Subnets: This “,” separated string tells Azure VPN gateway all subnets reachable through this 3e-636L3 device. No white space is allowed. The example only shows one LAN on red port labeled UNENCRYPT/POE”.

Pre-Shared Key: Value must be a character string between 16 and 64 characters. A character string may be composed of any combination of upper and lower case letters, number and the following special characters !, @, #, $, %, ^, &, *, (,).
Cipher Suite: Leave as default “Auto negotiated” which would use full list of supported algorithms (Appendix A) to negotiate with Azure. Note: If you use other option, make sure the IPsec Policy on Azure side matches.

The bottom section of this UI page shows the IPsec connection status. The example shows successful IPsec connection. You may click “Auto Refresh” button to see the statistics automatically updated every 2 seconds.

4. Test VPN Connection

To test VPN connection, plug a PC on red port labeled “UNENCRYPTED/POE” on 3e-636L3 device.

Ping virtual machine on virtual network on cloud.

e.g. in Figure 4,

To test S2S IPsec connectivity, ping from PC1 or PC2 to VM1 (10.3.1.4)
Appendix A: 3e-636L3 Supported Crypto Algorithms

3e-636L3 only supports the algorithms approved by FIPS/CC/DoDIN-APL.

Encryption Algorithms

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>IANA</th>
<th>AEAD</th>
<th>IKE</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>aes128</td>
<td>128 bit AES-CBC</td>
<td>12</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>aes256</td>
<td>256 bit AES-CBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes256gcm64</td>
<td>256 bit AES-GCM with 64 bit ICV</td>
<td>18</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>aes192gcm64</td>
<td>192 bit AES-GCM with 64 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes128gcm64</td>
<td>128 bit AES-GCM with 64 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes256gcm96</td>
<td>256 bit AES-GCM with 96 bit ICV</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes192gcm96</td>
<td>192 bit AES-GCM with 96 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes128gcm96</td>
<td>128 bit AES-GCM with 96 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes256gcm128</td>
<td>256 bit AES-GCM with 128 bit ICV</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes192gcm128</td>
<td>192 bit AES-GCM with 128 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aes128gcm128</td>
<td>128 bit AES-GCM with 128 bit ICV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Encryption Algorithms Supported by 636L3

Integrity Algorithms

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>IANA</th>
<th>IKE</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>sha1</td>
<td>HMAC SHA1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sha256</td>
<td>HMAC SHA2_256_128</td>
<td>12</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>sha384</td>
<td>HMAC SHA2_384_192</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sha512</td>
<td>HMAC SHA2_512_256</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Integrity Algorithms Supported by 636L3

Diffie Hellman Groups

DH Groups used in IKE only, not in ESP (ie. PFS group must be none)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>DH Group</th>
<th>Modulus</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod2048</td>
<td>14</td>
<td>2048 bits</td>
<td>regular group</td>
</tr>
<tr>
<td>ecp384</td>
<td>20</td>
<td>384 bits</td>
<td>NIST elliptic curve group</td>
</tr>
<tr>
<td>ecp521</td>
<td>21</td>
<td>521 bits</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Diffie Hellman Groups Supported by 636L3

3e-636L3 List

ike=aes256-aes128-sha512-sha384-sha256-shal-ecp384-ecp256-modp2048!

esp=aes256gcm128-aes256gcm96-aes256gcm64-aes256-aes192gcm128-aes192gcm96-aes192gcm64-aes128gcm128-aes128gcm96-aes128gcm64-aes128-sha512-sha384-sha256-shal!
Appendix B: PowerShell Script to Set up Azure VPN Gateway

#define variable names. Change values for variables $XXX to fit your deployment need
#postfix “n” means this variable is name string (vs. object)

$RGn = "VPN-Resource-Group"
$TAGn = "VPN"
$LOCn = "USGov Virginia"
$VNETn = "vnet-10-3-0-0-16"
$VNetPrefix = "10.3.0.0/16"
$FESUBNETn = "FrontEnd"
$FEPrefix = "10.3.0.0/24"
$BESUBNETn = "Backend"
$BEPrefix = "10.3.1.0/24"
$VMhostname = "PC-in-Vnet3"
$VMintfname = "vm3intf"
$DFTuser = "chaoxing"

#Note: Virtual Network Gateway can only be created in subnet with name ‘GatewaySubnet’.
$GWSUBNETn = "GatewaySubnet"
$GwPrefix = "10.3.255.0/27"
$GWN = "Gov-VPN-GW3"
$GWIPn = "Gov-VPN-GW3-IP"
$GWIPCONFn = "GW3ipconf"
$LocalGWn = "On-Premise-VPN1"
$OnPremisePublicIP = "71.163.239.155"
$OnPremiseSubnets = "192.168.2.0/24"
$S2SCONn = "On-Premise-VPN1-connection"
$PSK = "12345678901234567890"

#Note: PowerShell only allows one subnet per connection if it’s enclosed by “".

#ssh rsa key pair here is from X:\System_Test\LabSetup\azure-vm-sshkeys\ $sshPublicKey = "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDFuyJzL39nY7OHHAEExEadBfVDsQvF041g2cEftMSGA6zTRka
WncD0i1Oohw3s40oCx1s9lfXrxyWFoLH7LsNINcD0k0Cu7nEot+1HXH3KW4msczu2ePigd7550I
YOq4ErzyLN/oIOh/tCtca+1CXZ1CfRURdPcC44kWAD5niksbAOqINg603yEKSMS30v3s/BKkuUG9
5wVd/1C29NrcRn0hSh5mNga5cGSs4sxqA2zwW+SAt7u7s14CQuW1wybVNEgb5A5M0FUW0gMdHnG
gj8eMv6EEFx21fy/kf0kzpkOGgapQj5aVjvaxSLRerbRfTEOBQkc5yL/cTxsxGe9
chaoxing.lin@ultra-3eti.com"

#Create Virtual Network
$besub = New-AzVirtualNetworkSubnetConfig` `-Name $FESUBNETn` `-AddressPrefix $FEProfix
$besub = New-AzVirtualNetworkSubnetConfig` `-Name $BESubnetn` `-AddressPrefix $BEPrefix
$gwsub = New-AzVirtualNetworkSubnetConfig` `-Name $GWSUBNETn` `-AddressPrefix $GwPrefix
$vnet = New-AzVirtualNetwork` `-Name $VNETn` `-ResourceGroupName $RGn"
Create a virtual machine in BACKEND subnet, to test accessing PC on cloud
Define a credential object
$securePassword = ConvertTo-SecureString ' ' -AsPlainText -Force
$cred = New-Object System.Management.Automation.PSCredential ($DFTuser, $securePassword)

$vnet = get-AzVirtualNetwork ` -ResourceGroupName $RGn ` -Name $VNETn

$subnetconfig = Get-AzVirtualNetworkSubnetConfig ` -Name $BESUBNETn ` -VirtualNetwork $vnet

$nic = New-AzNetworkInterface ` -Name $VMintfname ` -ResourceGroupName $RGn ` -Location $LOCn ` -Subnet $subnetconfig

Create a virtual machine configuration
$vmConfig = New-AzVMConfig ` -VMName $VMhostname ` -VMSize "Standard_B1s" | ` Set-AzVMOperatingSystem ` -Linux ` -ComputerName $VMhostname ` -Credential $cred ` -DisablePasswordAuthentication | ` Set-AzVMSourceImage ` -PublisherName "Canonical" ` -Offer "UbuntuServer" ` -Skus "18.04-LTS" ` -Version "latest" | ` Add-AzVMNetworkInterface ` -Id $nic.Id

Configure the SSH key
Add-AzVMSshPublicKey ` -VM $vmconfig ` -KeyData $sshPublicKey ` -Path "/home/$DFTuser/.ssh/authorized_keys"

New-AzVM ` -ResourceGroupName $RGn ` -Location $LOCn -VM $vmConfig

Request a public IP, for VPN gateway
$gwpip = New-AzPublicIpAddress
 -Name $GWIPn
 -ResourceGroupName $RGn
 -Location $LOCn
 -AllocationMethod Dynamic

$subnet = Get-AzVirtualNetworkSubnetConfig
 -Name $GWSUBNETn
 -VirtualNetwork $vnet

$gwipconf = New-AzVirtualNetworkGatewayIpConfig
 -Name $GWIPCONFn
 -Subnet $subnet
 -PublicIpAddress $gwpip

#Verify: get public ip instance
$gwpip = Get-AzPublicIpAddress
 -Name $GWIPn
 -ResourceGroupName $RGn

#Create Virtual Network Gateway with point-to-site VPN. This can take up to 45 minutes! Just WAIT
$Gateway = New-AzVirtualNetworkGateway
 -Name $GWn
 -ResourceGroupName $RGn
 -Location $LOCn
 -IpConfigurations $gwipconf
 -GatewayType Vpn
 -VpnType RouteBased
 -GatewaySku VpnGw1

#Powershell session may expire, re-assign variables and go on
$RGn = “VPN-Resource-Group”
$TAGn = “VPN”
$LOCn = “USGov Virginia”
$VNETn = “vnet-10-3-0-0-16”
$VNetPrefix = ”10.3.0.0/16”
$FESUBNETn = ”GatewaySubnet”
$FEPrefix = ”10.3.0.0/24”
$BESUBNETn = ”Backend”
$BEPrefix = ”10.3.1.0/24”
$VMhostname = ”PC-in-Vnet3”
$VMintfname = ”vm3intf”
$DFTuser = ”chaoxing”

#Note: Virtual Network Gateway can only be created in subnet with name ‘GatewaySubnet’.
$GWSUBNETn = ”GatewaySubnet”
$GwPrefix = ”10.3.255.0/27”
$GWn = ”Gov-VPN-GW3”
$GWIPn = ”Gov-VPN-GW3-IP”
$GWIPCONFn = ”GW3ipconf”
$LocalGWn = ”On-Premise-VPN1”
$OnPremisePublicIP = ”71.163.239.155”

#Note: PowerShell only allows one subnet per connection if it’s enclosed by “”.
$OnPremiseSubnets = ”192.168.2.0/24”
$S2SCONn = "On-Premise-VPN1-connection"
$PSK = "12345678901234567890"

$Gateway = Get-AzVirtualNetworkGateway -ResourceGroupName $RGn -Name $GWn

#Create Site-to-Site VPN
$ipsecPolicy = New-AzIpsecPolicy -IpsecEncryption GCMAES256
 -IpsecIntegrity GCMAES256
 -IkeEncryption AES256
 -IkeIntegrity SHA256
 -DhGroup "ECP384"
 -PfsGroup "None"

$localgw = New-AzLocalNetworkGateway -Name $LocalGWn -ResourceGroupName $RGn -Location $LOCn
 -GatewayIpAddress $OnPremisePublicIP
 -AddressPrefix $OnPremiseSubnets

$connection = New-AzVirtualNetworkGatewayConnection -Name $S2SCONn -ResourceGroupName $RGn
 -Location $LOCn
 -VirtualNetworkGateway1 $Gateway
 -LocalNetworkGateway2 $localgw
 -ConnectionType "IPsec"
 -SharedKey $PSK
 -IpsecPolicies $ipsecPolicy
Appendix C: Script to Remove & Clean Up Azure VPN Gateway

#This script is to delete all persisted resources created by script in Appendix B. This is so that we can run script in Appendix B for demo.

#define variable names
#postfix “n” means this variable is name string (vs. object)

$RGn = "VPN-Resource-Group"
$LOCn = "USGov Virginia"
$VNETn = "vnet-10-3-0-0-16"
$GWn = "Gov-VPN-GW3"
$GWIPn = "Gov-VPN-GW3-IP"
$LocalGWn = "On-Premise-VPN1"
$S2SCONn = "On-Premise-VPN1-connection"
$VMhostname = "PC-in-Vnet3"
$VMintfname = "vm3intf"

Remove-AzVirtualNetworkGatewayConnection -Name $S2SCONn -ResourceGroupName $RGn -Force
Remove-AzLocalNetworkGateway -Name $LocalGWn -ResourceGroupName $RGn -Force

#Like create AzVgw, the remove- would take a long time, too.
Remove-AzVirtualNetworkGateway -Name $GWn -ResourceGroupName $RGn -Force
Remove-AzPublicIpAddress -Name $GWIPn -ResourceGroupName $RGn -Force
Remove-AzVM -ResourceGroupName $RGn -Name $VMhostname -Force
Remove-AzNetworkInterface -ResourceGroupName $RGn -Name $VMintfname -Force
Remove-AzVirtualNetwork -ResourceGroupName $RGn -Name $VNETn -Force